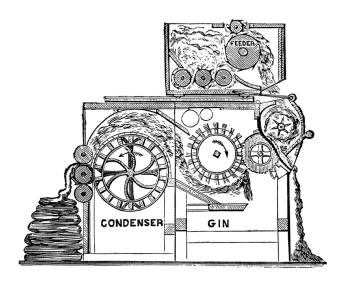


Remote Monitoring and Control of DC Power Systems

Alan Greene
EnCharge Power Systems

Industrial Shifts



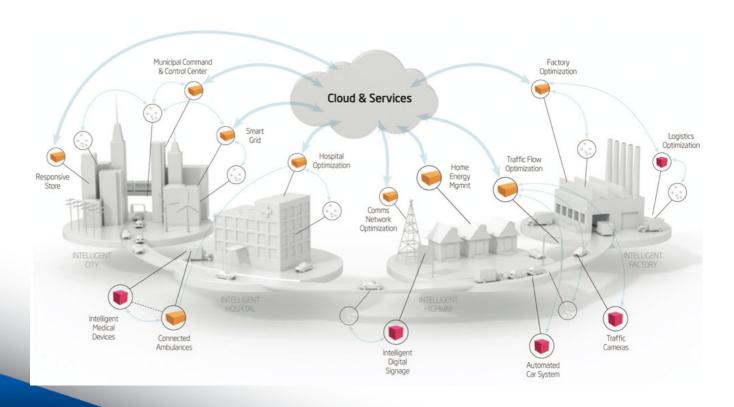
Industrial revolution

- Shift from people to machines
- Faster
- Safer

Assembly Line

- Machines linked together
- Streamline production
- Remove another layer of human interaction

Computer Age


- Vastly Increased calculating power
- Enabled dramatic changes in productivity
- Advances in Science

Internet/World Wide Web

Connectivity of Objects/Internet of Things

How do these technologies relate to Batteries?

Batteries are the center of all critical power applications

Utility

New smart grids make utility switchgear more important than ever

Renewables

- Storage-fluctuating demand
- Mobile assets- batteries for other applications
 Remote locations

Telecom

- Cellular technology is a fact of life
- Many towers are in remote locations
- Monitoring reduces truck rolls

Rail

- Rail Crossings
- Switch machines
- Switch heaters
- Very remote locations

UPS

- Near Instantaneous emergency backup power
- Computers, data centers

Manufacturing

- Communication
- Backup
- Switchgear

Hospitals

- Generators are not always operational
- Not just lights, but also lab tests and life support

When batteries fail, time, money, and even lives can be lost

Why Monitor?

- Timeliness
- Accuracy
- Safety

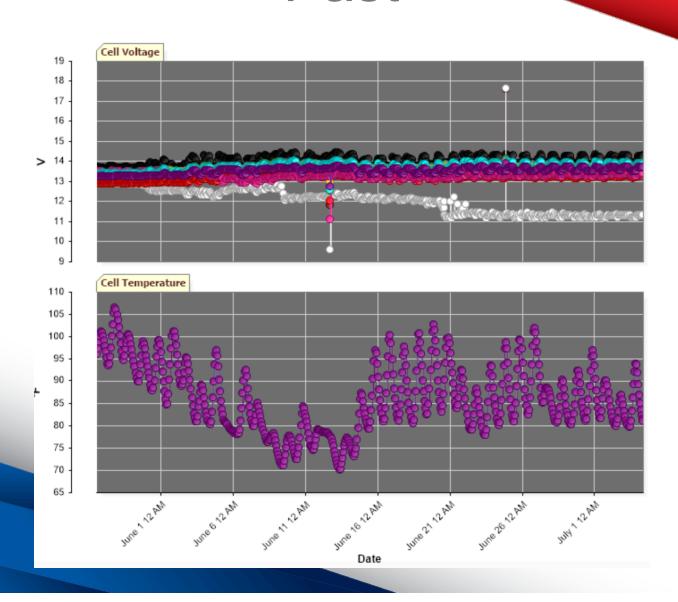
What exactly does remote battery monitoring do?

Precise Information

Past

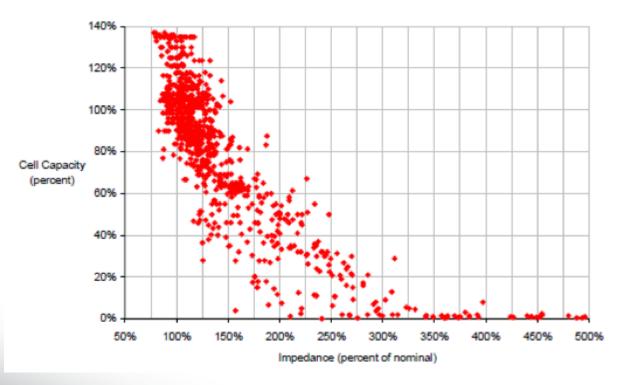
Present

Future



Cloud Hosted

Present



Past

Future

Test Results for VRLA Cells

What can this information prevent?

- Thermal runaway
- Preventable large thermal events (fires, explosions)
- Undercharge
- Injury or death

Control

RECo

Connection Info

Status

Settings

Monitor Settings

This page allows the configuration of the board's internal settings.

Enter the new settings for the board below:

Password:	0		
Machine Serial Number:	30002		
Charger Type:	12VDC/20AMP ✓	_	
Battery Type:	Lead Acid 🗸		
Number of Cells:	6		
Volts Per Cell:	2.250	Volts	
	Total Voltage(13.50)		
Temperature Compensation:	Off 🗸		
Current Setpoint:	21.5	Amps	
Update Interval:	5	Min	
Total Second Counter:			
Currently(418)			
High Battery Temp Setpoint:	160		
Low Battery Temp Setpoint:	-40		
High Voltage Setpoint:	22.0	Volts	
Low Voltage Setpoint:	0.0	Volts	
High Current Setpoint:	22.0	Amps	
Low Current Setpoint:	0.0	Amps	
Charger Frequency Setpoint:	50000.0	нz	
Equalization Frequency:	0.00	Days	
Currentiv(0.00)			

Cloud storage of data

- Accessible
- Safe
- No software to install/maintain

Motive Power Applications

- Voltage
- Current
- Fluid levels

Regulatory Environment

- NERC PRC-005
- FRA

Conclusion

- Immediate and constant data
- Historic data
- System projections
- Tremendously safer
- Prevents downtime
- Reduces truck rolls
- Bottom line, save money and in some cases, lives.
- Regulations are changing so that these technologies will not only help with compliance by in many cases be necessary

Questions to you

