CIC energi GUNE

energy cooperative research centre

© CIC energiGUNE. 2017 All rights reserved

Degradation Mechanisms in Cylindrical Li-Ion Batteries During Cell Cycling

L. Buannic,¹ F. Aguesse,¹ E. Sarasketa-Zabala,²

E. Gucciardi,¹ E. Bekaert¹

Battery Power 2017 Dallas, May 17th

- **1. CIC Energigune**
- 2. Motivation
- 3. Cell Characteristics Ageing Conditions
- 4. Ageing and Post-test Analysis

Where are we...? Vitoria-Gasteiz, capital of the Basque Country

Opening Date: Sept 2011 About 80 researchers Electrochemical & Thermal Energy Storage

From Fundamental to Industrial Research

Infrastructure:

- Synthesis laboratories (solid state and organic chemistry)
- Characterization laboratory (ICP-AES, TGA/DSC, FTIR, UV-vis...)
- ✓ Platforms (solid state NMR, XRD, EM…)
- Testing laboratory (potentiostats, Maccor, climatic chamber)
- ✓ Dry room (prototyping)
- ✓ Computational studies group

1. CIC Energigune

2. Motivation

- 3. Cell Characteristics Ageing Conditions
- 4. Ageing and Post-test Analysis

Battery Market Evolution... ...driven by Application Needs

Broad Range of Applications with various Energy Requirements

CIC Energigune All rights reserved

Li-ion Batteries: a High Concentration of Energy in a Small Casing...

From Portable Electronics:

Performance and *Ageing* will *differ* based on the type of *device*, *application*, and *technology*.

To Transportation Applications:

Motivation

What is the Driving Force for Post-test Analysis?

- Better understanding the reasons behind battery failure
- What are the main degradation mechanisms occurring during ageing?
- How can we use this knowledge to improve cell manufacturing?
- Determination of the condition of use for an extended life

Battery Post-test Analysis

Critical Steps for Efficient Analysis

Ageing Conditions before cell opening :

- Calendar vs. Cycling
- States Of Charge, Depths Of Discharge, C-rates
- Cycling Environment (temperature, humidity, etc.)

Steps for post-test analysis* :

- 1°) Observe the aged cell
- 2°) Open the discharged cell
- 3°) Analyze the various components

* T. Waldmann et al. J. Electrochem. Soc. 2016, 163, A2149

Our Capabilities

Which Type of Cells Can We Open?

- **1. CIC Energigune**
- 2. Motivation
- 3. Cell Characteristics Ageing Conditions
- 4. Ageing and Post-test Analysis

Cell Characteristics and Ageing Conditions

Li-ion Battery for High Energy Density

Selected system:

- LiFePO₄ / Graphite chemistry
- 2.3 Ah nominal capacity
- 26650 cylindrical cell

Cycling Ageing:

- ♦ 1 C \rightarrow 2.3 A / cycle
- ✤ 30°C in a climatic chamber
- ✤ 100 % DOD

Impact of Large Cycling Amplitude on Cell Performances

Post-test Analysis

Selection of Cells to Be Opened

Pristine Battery as received from the manufacturer, discharged

Beginning of Life (BOL)

after conditioning and internal procedure for first check-ups

- Half Life (½ Life) aged for 1521 FEC, 93% SOC
- End of Life (EOL) aged for 3276 FEC, 79.5% SOC

- **1. CIC Energigune**
- 2. Motivation
- 3. Cell Characteristics Ageing Conditions
- 4. Ageing and Post-test Analysis

Cycling at 100% Depth of Discharge

Change in State of Health

Capacity evolution:

- End of Life after 3000 cycles
- Linear fading < 2500 cycles</p>
- More severe capacity loss afterwards

Cycling at 100% Depth of Discharge

CIC energigune energy cooperative research centre

Cell Degradation: 1st Hints

Im (Z) [mOhm]

-2

2

- SOC: no effect on cell resistance
- Cycling: increase of electrolyte resistance
 Possible growth of SEI layer
- ♦ Cycling: Fading of anodic capacity
 → Possible degradation of graphite

Mapping of Anode Electrode

Graphite anode:

Pag. 18

Microstructural Analysis

Graphite Anode: Summary

Formation of stable SEI layer

SEI layer growth due to further electrolyte decomposition
 Potential gas formation due to degradation of SEI layer

Electrochemical Characterization

*LiFePO*₄ *cathode vs. Li metal*

Electrochemical Characterization

Graphite anode vs. Li metal

Structural Analysis

Graphite Anode

- No difference between side and middle of electrode
- ♦ No shift of (002) peak \rightarrow No Li⁺ getting trapped upon ageing
- ✤ Peak intensity reduction → Growth of amorphous layer on top of graphite surface

Structural Analysis

LiFePO₄ Cathode

No structural changes observed upon ageing

♦ EOL: Presence of some FePO₄ after cell discharge
 → some Li⁺ loss, to be related to Li plating at graphite surface

Evolution of SOC Window

In Particular for the Middle of Cell

- Growth and degradation of SEI layer at graphite electrode
- Li⁺ loss due to electrolyte decomposition and Li plating
- → Diminution of available capacity within the voltage limits

Degradation Mechanisms during Cycling

Cylindrical cell LiFePO₄ / Graphite 2.3 Ah

- ✤ Ageing performed at 30°C, 1C, 100% DOD
- ❖ LiFePO₄ electrode: no degradation observed
 → Excellent material
- Graphite electrode appeared inhomogeneous after initial discharge
- ♦ Decomposition of electrolyte on graphite surface to form SEI
 → Linear cell capacity fading
- ◆ Degradation of SEI layer on graphite surface
 → Accelerates cell degradation due to inactivity of graphite
 → Reduction of operating voltage window

Post-test Analysis Required to Understand Battery Failure!

Thank you for your attention!

For more on our research....

Cycling Ageing:

E. Sarasketa-Zabala et al., J. Phys. Chem. C, 2015, 119, 896.

Understanding Lithium Inventory Loss and Sudden Performance Fade in Cylindrical Cells during Cycling with Deep Discharge Steps

Calendar Ageing:

A. Iturrondobeitia et al., J. Phys. Chem. C, 2017, under revision.

Post-Mortem Analysis of Calendar Aged 16 Ah NMC/Graphite Pouch Cells for EV Application

B. P. Matadi et al., J. Electrochem. Soc., 2017, 164, A1089

Effects of Biphenyl Polymerization on Lithium Deposition in Commercial Graphite/NMC Lithium-Ion Pouch-Cells during Calendar Aging at High Temperature

Review:

T. Waldmann et al., J. Electrochem. Soc. 2016 , 163, 10, A2149-A2164

Review—Post-Mortem Analysis of Aged Lithium-Ion Batteries: Disassembly Methodology and Physico-Chemical Analysis Techniques

CIC energi GUNE

energy cooperative research centre

© CIC energiGUNE. 2017 All rights reserved

Degradation Mechanisms in Cylindrical Li-Ion Batteries During Cell Cycling

L. Buannic,¹ F. Aguesse,¹ E. Sarasketa-Zabala,²

E. Gucciardi,¹ E. Bekaert¹

Battery Power 2017 Dallas, May 17th

