Advanced Battery Charger Considerations for Portable Devices

Jinrong Qian
Richard Stair

Battery Charge Management
Texas Instruments
Li-Ion Charge CC-CV Profile

- **Constant Current**: 20-30% charging time, 70-80% capacity
- **Constant Voltage**: 70-80% charging time, 20-30% capacity
Battery Charger Topologies
Charger Requirements for Portable Devices

Input Power Source

- Adapter: 5V, 9V, and 12V up to 2A (24W)
- USB2.0: 5V@100mA/500mA (many systems)
- USB3.0: 5V@150mA/900mA/1.5A

Battery System Performance:

- Support dynamic system pulsating power
- Fast and high efficiency charging
- Supporting all kinds of battery chemistry
- Thermal management
Charging with an Active System Load

Charger output current is shared:
\[I_{CHG} = I_{BAT} + I_{SYS} \]

Issues:
- Operate system and charging simultaneously
- Safety Timer
- Termination
Linear Charger with DPM Architecture

- Separate charge current path from system current path
- Charge current controlled by Q2
- Powering System from adapter through Q1
- Simultaneously powering system and charging battery
- Linear Charger
Switch-Mode Battery Charger with DPM

- Maximize use of the input current
- Current sharing between system & charger
- Minimize the AC adapter size and power rating

How to avoid adapter crash if its current is NOT Known?
Consideration 1: How to Support unknown Adapter?

Input Voltage Regulation DPM

- If \(V_{IN} < V_{INDPM} \); \(D \rightarrow I_{CHG} \rightarrow I_{IN} \rightarrow VIN = V_{INDPM} \)
- Automatically Track Adapter’s Max Current.
- Perfect for third party adapter
Consideration 2: How to Support Pulsating Load?

Supplement Mode Operation

Pre-charge: Q4 -- Linear Mode, Fast Charge: Q4 = ON

Battery Power 2012
Consideration 3: How To Reduce the Battery Charging?

- High Current Charging
- IR Compensation
 1. Extending the Constant Current mode
 2. Reducing the Constant Voltage charging time
Battery Charging Time

Goal:
VREG = 4.2V + IR (R = Rdson + Rsense + Trace resistance)
Battery Charging Profile with IR Compensation

- Longer constant current phase and shorter constant voltage phase reduces total charge time.

Battery Power 2012
Consideration 4: How To Support USB OTG?

- Bidirectional Synchronous Buck:
 a. Charge in Buck
 b. Discharge in Boost for USB OTG

- Save an additional Boost converter
Design Examples
4A I2C Single Cell Battery Charger

Support DC Adaptor, USB2.0 and USB 3.0 up to 3A

Input 3.9V – 17V

D+/D- Detection

I2C Interface

USB On-The-Go Default USB Current

USB: 3.4V-4.4V

Up to 4A Charge Current and 6A Discharge Current

Input Current Setting

Integration of power path and switching MOSFETs

Dual battery pack Thermistor Monitoring

Battery Power 2012
Thermal Performance (IC Case Temperature)

bq24190 PG10 Case Temperature

- VBUS=5V, VBAT=3.8V
- VBUS=9V, VBAT=3.8V
- VBUS=12V, VBAT=3.8V

VBAT=3.8V, Ta= 31ºC
System Efficiency

- Measured on EVM

![Graph showing system efficiency vs. charge current for VBUS 5V, 9V, and 12V.]

V BAT = 3.8V with 2.2uH inductor

Battery Power 2012
Summary

• Charger Topology: Linear vs Switching Mode charger
• How to Support all kinds of Power Source and USB?
• Fast Charging: high charge current and IR Compensation
• Design Examples