2018 CEO Forecast with Patrick Trippel at Inventus Power

Part of the Battery Power 2018 Trends to Watch Series

Commentary contributed by Patrick Trippel, CEO,  Inventus Power

There has been a sea change in the battery industry in the last year, and since we expect these changes to extend into 2018 and beyond, I have begun to think of this as the beginning of a new era. The last fifteen years have shown how readily our world can adopt new mobile technologies. Read more about 2018 CEO Forecast with Patrick Trippel at Inventus Power

How Smart is Your Battery Charging?

Commentary contributed by Michele Windsor, Global Marketing Manager, Accutronics

In 1841, humans could expect to live to the ripe old age of 42 on average, depending on their gender. With significant improvements to medical knowledge and advancements in technology, this has now doubled and medical device manufacturers are under intense pressures to develop products for the aging population at a low cost, without jeopardizing quality. Read more about How Smart is Your Battery Charging?

Ultra-Fast Charging: Can It Play a Role in the EV Revolution?

Contributed commentary by Stephen Voller, CEO and Founder, ZapGo Ltd.

Several nations, including England and China, have publicized plans to phase out traditional gas-powered vehicles in favor of electric vehicles (EVs). This has spurred debate over the technical challenges of scaling-up existing EV infrastructure and offering quick recharging for EV owners. New technology already offers ultra-fast charging for small electric vehicles and could sharply reduce EV recharging times in the future. Read more about Ultra-Fast Charging: Can It Play a Role in the EV Revolution?

How to Charge Li-Ion with a Parasitic Load

Contributed commentary by Isidor Buchmann, CEO & Founder, Cadex Electronics Inc.

Charging a battery is simple but the complexity rises when a parasitic load is present during charge. Depending on battery chemistry, the charge process goes through several stages, and with lithium-ion Stage 1 consists of a constant current (CC) charge that brings the battery to roughly 70 percent state-of-charge (SoC). The cell reaches 4.20V/cell, a common voltage limit for Li-ion, after which Stage 2 continues by applying a constant voltage (CV) charge. The current begins to drop as the battery saturates. Full-charge is reached when the current decreases to typically 0.05C, which is one-twentieth of the rated ampere-hour. Li-ion cannot absorb overcharge and no charge is applied in Stage 3. Figure 1 illustrates typical voltage, current and capacity signatures of the CCCV charge. Read more about How to Charge Li-Ion with a Parasitic Load

Transparent Processes from the Powder to the Cell

Contributed Commentary by Maximilian Sackerer, Senior Business Consultant for Battery and Fuel Cell Manufacturing, Siemens AG

Powerful lithium-ion batteries are a key component both in electric vehicles and for the decentralized storage of electricity from renewable energy sources. Acceptance by car drivers depends on the capacity, safety, durability, and costs of the batteries and this, in turn, will determine the future of electric mobility. All these properties have to be brought up to a worldwide competitive level in the mass production of lithium-ion cells, and continuously improved. Read more about Transparent Processes from the Powder to the Cell

Printed and Bio-Sourced Lithium Ion Batteries for Wearable Technologies

Commentary Contributed by O. El Baradai, J. Schleuniger*, S. Fricke, C. Bosshard, CSEM SA, Switzerland

 

Continuous progress in electronic devices, in particular portable electronic gadgets, is creating new opportunities and products to revolutionize our daily life. However, these ubiquitous portable devices with different functions require highly efficient power sources to sustain their use. Batteries are essential for powering such portable electronic devices. A battery is a closed system in which energy is stored in chemical form, and it is converted to electrical energy by connecting the battery to an external load to complete the circuit, causing electric current to flow between the anode and cathode. Electronics have traditionally been designed around commercial batteries:prismatic, cylindrical, and coin cells, which are bulky, rigid, and non-flexible, making them unsuitable for powering flexible electronics. Read more about Printed and Bio-Sourced Lithium Ion Batteries for Wearable Technologies